Wales Primary School Calculation Policy

Addition and subtraction

One More, One Less	When we add one, we get the next counting number. When we subtract one, we get the previous counting number (e.g. $5-1=4$).	Number Neighbours: Spot the Difference	Adjacent numbers have a difference of 1 . Adjacent odds and evens have a difference of 2. Spot number neighbours (adjacent, odds or evens) to solve subtractions of adjacent numbers (e.g. 5-4 = 1). of adjacent odds (e.g. $9-7=2$) or adjacent evens (e.g. 6-4 = 2)
Two More, Two Less: Think Odds and Evens	If we add two to a number, we go from odd to next odd or even to next even. If we subtract two from a number, we go from odd to previous odd or even to previous even.	7 Tree and 9 Square	Use these visual images to remember addition and subtractions fact families that children can find tricky. For example, visualising the 7 tree helps remember that $7-3=4$. Visualising the 9 square helps remember that $3+6=9$.
Number 10 Fact Families (10)	Go beyond just recalling the pairs of numbers that add to 10 . Make sure that we can also spot additions and subtractions which we can use number bonds to 10 to solve.		The numbers 11-20 are made up of 'Ten and a Bit'. Recognising and understanding the 'Ten and a Bit' structure of these numbers enables addition and subtraction facts involving their constituent parts (e.g. 3 $+10=13,17-7=10,12-10=2$).
Five and A Bit $\mathrm{NO}, \mathrm{~N}$	The numbers 6, 7,8 and 9 are made up of 'five and a bit'. This can be shown on hands, and supports decomposition of these numbers into their five and a bit parts (e.g. $5+3=8,9-5=4$).	Make Ten and Then...	Additions which cross the 10 boundary can be calculated by 'Making Ter' first, and then adding on the remaining amount (e.g. $8+6$ can be calculated by thinking ' $8+2=10$ and 4 more makes 14 '). The same strategy can be applied to subtractions through 10 .
Know about 0	When we add 0 to or subtract 0 from another number, the total remains the same. If we subtract a number from itself, the difference is 0 .		Any addition and subtraction can be calculated by adjusting from a fact you know already, (e.g. $6+9$ is one less than $6+10$).
Doubles and Near Doubles	Memorise doubles of numbers to 10 , using a visual approach. Then use these known double facts to calculate near doubles and hidden doubles. Once we know $6+6=12$ then $6+7$ and $5+7$ is easy.	Swap It	When the order of two numbers being added (addends) is exchanged the total remains the same. E.g. $1+8=8$ +1 . Sometimes reversing the order of the two addends makes addition easier to think about conceptually.

Key skills for addition (FS2) Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts

Concept that + the answer will be greater
Number bonds to 5 / 10
(Y1) Add two 1 digit numbers to 10

Number bonds to 10 and within 10

Representations / models

Subitising, partitioning, tell a story, building a 5/10 frame/ bead bar, what's missing from a 5/10 frame/ bead bar

(Y1/2) Add 1 and 2 digit numbers to 20

Part - whole model, bar model, number shapes, ten frame (within 10), bead strings (10), number tracks

Add a single digit to a multiple of 10 mentally
Number bonds to 10 / 20
Use number line to count on (and back) in different step sizes
Partition numbers in different ways e.g.

$$
8+7=8+2+5
$$

Part - whole model, bar model, number shapes, ten frame (within 20), bead strings (20), number tracks, number lines (labelled) straws

(Y2) Add 31 digit numbers

Add more than 2 single digit numbers mentally
Look for bonds / doubles / near doubles

$$
7+6+3=16
$$

Part - whole model, bar model, number shapes, ten frame (within 20)

Part - whole model, bar model, number lines (labelled and blank), straws, hundred square

Key skills for subtraction	Representations / models
(FS2) See under addition	
(Y1) Subtract two 1-digit numbers to 10 Know number bonds within 10	$7-3=4$ Part-whole model Bar model Number shapes Ten frames (within 10) Bead strings (10) Number tracks

(Y1/2) Subtract 1 and 2-digit numbers to 20

Subtract 9 to a number by subtracting 10 then adding 1 Know number bonds to 20 Use related inverse facts Know what must be added to a number to get to the next multiple of 10

$14-6=8$

Part-whole model Bar model Number shapes Ten frames (within 20) Bead string (20) Number tracks Number lines (labelled) Straws

(Y2/3) Subtract 1 and 2-digit numbers to 100

Know what must be added to a number to get to the next multiple of 10
Know pairs of multiples or 10 to 100

(Y2) Subtract two 2-digit numbers

Know pairs of numbers to 100 e.g. $32+68=100$
Know addition and subtraction facts for all numbers to 20 e.g. $13-8=$ $4+\quad=17$

Written method - numberline (using place value counters / base 10 only to be used where no crossing boundaries)
(Y3) Subtract with up to 3digits

Know pairs of numbers to 100 e.g. $32+68=100$
Know what must be added to any 3 digit number to make the next 100 Add 3 numbers mentally (2 digit number, 3 digit number - multiple of 10 and single digit)
Make jottings if needed
Know in multiples of 10 how to get closest to a number e.g. from 300 to 435 would be +130 to get to 430

Written method - numberline
(using place value counters / base 10 only to be used where no crossing boundaries)

65

$$
65-28=37
$$

$54-24=30$

Part-whole model Bar model Number lines (labelled) Number lines (blank) Straws Hundred square Place value counters

454-224 = $\mathbf{2 3 0}$

(Y4) Subtract with up to 4-

 digitsKnow pairs of numbers to 100 e.g. $32+68=100$
Know what must be added to any 3 digit number to make the next 100 Add 3 numbers mentally (2 2-digit numbers 4 digit number - multiple of 100)

Make jottings if needed Know in multiples of 100 how to get closest to a number e.g. from 2800 to 4357 would be +1500 to get to 4300

$3.454-1,224=2230$

Written method - numberline (using place value counters / base 10 only to be used where no crossing boundaries)
(Y5/6) Subtract with more than 4 digits

Part-whole model Bar model Base 10 Place value counters

Estimation for sense of answer

$$
294,382-182,501=111,881
$$

Part-whole model Bar model Place value counters Column subtraction
(Y5/6) Subtract with up to 3 decimal places

Part-whole model Bar model Place value counters Column subtraction

Straws

$5+3=8$

$35+37=72$

$35+37=72$

Base 10/Dienes (addition)

Base 10/Dienes (subtraction)

Place Value Counters (Subtraction)

$\begin{array}{r}-207 \\ \hline 445 \\ \hline\end{array}$
Number line finding the difference

1. Go to next multiple of 10 or 100 (1 or 2 digit no.)
2. Go to the closest multiple of 10 or 100 to the number (multiples of 10)
3. Go to the final number (1 or 2digit no.)
